Search results for "neuronal plasticity"

showing 10 items of 166 documents

Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception

2016

Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem …

Male0301 basic medicineGeneral Physics and AstronomyNEURAL STEM-CELLSMOUSEMiceSUBEPENDYMAL ZONENeural Stem CellsLateral VentriclesLINEAGE PROGRESSIONBRAININ-VIVOMice KnockoutNeuronal PlasticityMultidisciplinaryCell CycleQNeurogenesisNICHEAnatomyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structureSignal TransductionSTIMULATES NEUROGENESISEGF Family of ProteinsNeurogenesisScienceNotch signaling pathwaySubventricular zoneBiologyInhibitory postsynaptic potentialArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNeuroplasticitymedicineBiological neural networkAnimalsCalcium-Binding ProteinsProteinsGeneral ChemistryOlfactory PerceptionENDOTHELIAL-CELLSnervous system diseasesOlfactory bulbMice Inbred C57BLSELF-RENEWAL030104 developmental biologynervous system
researchProduct

Presynaptic CB1 Receptors Regulate Synaptic Plasticity at Cerebellar Parallel Fiber Synapses

2011

Endocannabinoids are potent regulators of synaptic strength. They are generally thought to modify neurotransmitter release through retrograde activation of presynaptic type 1 cannabinoid receptors (CB1Rs). In the cerebellar cortex, CB1Rs regulate several forms of synaptic plasticity at synapses onto Purkinje cells, including presynaptically expressed short-term plasticity and, somewhat paradoxically, a postsynaptic form of long-term depression (LTD). Here we have generated mice in which CB1Rs were selectively eliminated from cerebellar granule cells, whose axons form parallel fibers. We find that in these mice, endocannabinoid-dependent short-term plasticity is eliminated at parallel fiber…

PhysiologyPresynaptic TerminalsNeural facilitationNonsynaptic plasticityParallel fiberSynaptic TransmissionMice03 medical and health sciences0302 clinical medicineReceptor Cannabinoid CB1CerebellumMetaplasticitymedicineAnimalsLong-term depression030304 developmental biologyMice Knockout0303 health sciencesNeuronal PlasticitySynaptic scalingHomosynaptic plasticityChemistryLong-Term Synaptic DepressionGeneral NeuroscienceArticlesMice Inbred C57BLmedicine.anatomical_structurenervous systemSynaptic plasticityNeuroscience030217 neurology & neurosurgeryJournal of Neurophysiology
researchProduct

Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease

2009

BACKGROUND: The neural mechanisms and the circuitry involved in levodopa-induced dyskinesia (LID) are still partially obscure. LID can be considered the consequence of an abnormal pattern or code of activity that originates and is conveyed from the basal ganglia to the thalamus and the cortical motor areas. However, not only striatothalamocortical motor circuits but also other interconnected pathways could be implicated in its pathogenesis. METHODS: In a series of experiments, we applied repetitive transcranial magnetic stimulation (rTMS) over the lateral cerebellum in a group of patients with advanced Parkinson disease, to investigate whether modulation of cerebellothalamocortical circuits…

Dyskinesia Drug-InducedLevodopaCerebellummedicine.medical_treatmentCTBStmSeverity of Illness IndexrehabilitationNOLevodopaNeural PathwaySeverity of Illness Index; Analysis of Variance; Levodopa; Dyskinesia Drug-Induced; Humans; Cerebellum; Aged; Neural Inhibition; Thalamus; Motor Cortex; Parkinson Disease; Evoked Potentials Motor; Neural Pathways; Middle Aged; Neuronal Plasticity; Transcranial Magnetic StimulationThalamusCerebellumNeural PathwaysBasal gangliamedicineHumansEvoked PotentialsThalamuAgedAnalysis of VarianceNeuronal PlasticityDyskinesiaMotor CortexNeural InhibitionParkinson DiseaseMiddle AgedEvoked Potentials MotorTranscranial Magnetic StimulationAged; Analysis of Variance; Cerebellum; Drug-Induced Dyskinesia; Evoked Potentials; Motor; Humans; Levodopa; Middle Aged; Motor Cortex; Neural Inhibition; Neural Pathways; Neuronal Plasticity; Parkinson Disease; Severity of Illness Index; Thalamus; Transcranial Magnetic StimulationTranscranial magnetic stimulationmedicine.anatomical_structureMotorDyskinesiaDrug-Inducedparkinson's diseaseSettore MED/26 - NeurologiaDrug-Induced DyskinesiaNeurology (clinical)Primary motor cortexmedicine.symptomPsychologyNeuroscienceHumanMotor cortexmedicine.drugNeurology
researchProduct

Voxel-based morphometry depicts central compensation after vestibular neuritis.

2010

Objective Patients who have had vestibular neuritis (VN) show a remarkable clinical improvement especially in gait and posture >6 months after disease onset. Methods Voxel-based morphometry was used to detect the VN-induced changes in gray and white matter by means of structural magnetic resonance imaging. Twenty-two patients were compared an average 2.5 years after onset of VN to a healthy sex-and age-matched control group. Results Our analysis revealed that all patients had signal intensity increases for gray matter in the medial vestibular nuclei and the right gracile nucleus and for white matter in the area of the pontine commissural vestibular fibers. A relative atrophy was observed in…

AdultMaleSensory systemVestibular NerveSomatosensory systemHippocampusSeverity of Illness IndexWhite matterVestibular nucleiAdaptation PsychologicalNeural PathwaysmedicineImage Processing Computer-AssistedHumansVestibular NeuronitisAgedVestibular systemNeuronal PlasticityProprioceptionGracile nucleusBrainAnatomyVoxel-based morphometryMiddle AgedMagnetic Resonance Imagingmedicine.anatomical_structureNeurologyFemaleNeurology (clinical)AtrophyPsychologyAnnals of neurology
researchProduct

Post-weaning social isolation rearing influences the expression of molecules related to inhibitory neurotransmission and structural plasticity in the…

2012

Several lines of evidence indicate that alterations in the structure of neural circuits and inhibitory neurotransmission underlie the physiopathogenesis of schizophrenia. Most of the studies on these parameters have been focused on cortical regions and, despite the crucial role of the amygdala in this psychiatric disorder, there is less information on this region. In order to expand this knowledge, we have studied the expression of molecules related to inhibitory neurotransmission and structural plasticity in rats subjected to post-weaning isolation rearing, an animal model that reproduces several core symptoms of schizophrenia. We have analyzed, using qRT-PCR and immunohistochemistry, the …

NeuropilInterneuronGlutamate decarboxylaseSynaptophysinNeural Cell Adhesion Molecule L1NeurotransmissionInhibitory postsynaptic potentialReal-Time Polymerase Chain ReactionAmygdalaSynaptic TransmissionInterneuronsPregnancymedicineAnimalsRNA MessengerMolecular BiologyNeural Cell Adhesion MoleculesNeuronal PlasticitybiologyGlutamate DecarboxylaseGeneral Neurosciencemedicine.diseaseAmygdalaImmunohistochemistryRatsmedicine.anatomical_structurenervous systemSocial IsolationSchizophreniaSynaptophysinbiology.proteinSialic AcidsNeural cell adhesion moleculeFemaleNeurology (clinical)PsychologyNeuroscienceDevelopmental BiologyDensitometryBrain research
researchProduct

Interleukin 10 restores lipopolysaccharide-induced alterations in synaptic plasticity probed by repetitive magnetic stimulation

2020

Systemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.e., the long-term potentiation (LTP) of excitatory neurotransmission. Here, we tested whether synaptic plasticity induced by repetitive magnetic stimulation (rMS), a non-invasive brain stimulation technique used in clinical practice, is affected by LPS-induc…

lcsh:Immunologic diseases. AllergyLipopolysaccharides0301 basic medicinenon-invasive brain stimulationInterleukin-1betaImmunologyTNFα-reporter mouseMice TransgenicStimulationNeurotransmissionHippocampusSynaptic TransmissionneuroinflammationInterferon-gammaMice03 medical and health sciences0302 clinical medicineGenes Reportertranscranial magnetic stimulationAnimalsImmunology and Allergyddc:610NeuroinflammationOriginal ResearchInflammationNeuronsNeuronal Plasticitysynaptic plasticityInterleukin-6Tumor Necrosis Factor-alphaChemistryLong-term potentiationInterleukin-10Mice Inbred C57BLOrganoids030104 developmental biologyBrain stimulationSynaptic plasticityExcitatory postsynaptic potentialTumor necrosis factor alphaMicrogliainterleukin 10lcsh:RC581-607Neuroscience030217 neurology & neurosurgery
researchProduct

Effects of the Antidepressant Fluoxetine on the Somatostatin Interneurons in the Basolateral Amygdala

2018

Although the precise mechanism of action of antidepressant drugs remains elusive, the neuroplastic hypothesis has gained acceptance during the last two decades. Several studies have shown that treatment with antidepressants such as Fluoxetine is associated with enhanced plasticity in control animals, especially in regions such as the visual cortex, the hippocampus and the medial prefrontal cortex. More recently, the basolateral amygdala has been shown to be affected by Fluoxetine leading to a reopening of critical period-like plasticity in the fear and aggression circuits. One of the key elements triggering this type of brain plasticity are inhibitory networks, especially parvalbumin intern…

Male0301 basic medicineDendritic spinegenetic structuresInterneuronHippocampusMice TransgenicMice03 medical and health sciences0302 clinical medicineInterneuronsFluoxetineNeuroplasticitymedicineAnimalsPrefrontal cortexNeuronal PlasticitybiologyBasolateral Nuclear ComplexGeneral NeuroscienceAntidepressive Agents030104 developmental biologymedicine.anatomical_structureSomatostatinnervous systembiology.proteinSomatostatinNeuroscience030217 neurology & neurosurgeryParvalbuminBasolateral amygdalaNeuroscience
researchProduct

Secondary tactile hypoesthesia: a novel type of pain-induced somatosensory plasticity in human subjects

2004

Quantitative sensory testing revealed that pain induced by intracutaneous capsaicin injection elicited secondary hyperalgesia coexisting with secondary tactile hypoesthesia. Mapping the areas of altered mechanical sensations adjacent to the capsaicin injection disclosed that the area of secondary hyperalgesia was always nested in a larger area of secondary hypoesthesia easily detected as numbness by most subjects. Psychometric functions revealed a twofold rightward shift of tactile detection (hypoesthesia), which coexisted with a more than fourfold leftward shift of pricking pain detection (hyperalgesia) in the same skin area. As a mechanism we propose a functional switch at the spinal leve…

AdultMaleAdolescentPresynaptic TerminalsPainNeurological disorderSomatosensory systemSynaptic TransmissionHypesthesiachemistry.chemical_compoundmedicineHumansNeurons AfferentSkinAfferent PathwaysNerve Fibers UnmyelinatedNeuronal PlasticityGeneral NeuroscienceNociceptorsPeripheral Nervous System DiseasesNeural InhibitionHypoesthesiaMiddle Agedmedicine.diseaseMechanoreceptorNociceptionmedicine.anatomical_structurechemistryTouchCapsaicinAnesthesiaHyperalgesiaNociceptorFemaleCapsaicinmedicine.symptomPsychologyMechanoreceptorsNeuroscienceNeuroscience Letters
researchProduct

Streptozotocin diabetic mice display depressive-like behavior and alterations in the structure, neurotransmission and plasticity of medial prefrontal…

2015

Diabetes mellitus patients are at increased risk of developing depression, although the neurobiological bases of this comorbidity are not yet fully understood. These patients show CNS alterations, similar to those found in major depression, including changes in the structure and neurotransmission of excitatory neurons. However, although depressive patients and animal models also display alterations in inhibitory networks, little is known about the effects of diabetes on interneurons. Our main objective was to study the impact of diabetes on interneurons of the medial prefrontal cortex (mPFC), one of the regions most affected by major depression. For this purpose we have induced diabetes wit…

Malemedicine.medical_specialtyInterneuronGlutamate decarboxylaseGreen Fluorescent ProteinsSynaptophysinPrefrontal CortexMice TransgenicNeural Cell Adhesion Molecule L1NeurotransmissionInhibitory postsynaptic potentialSynaptic TransmissionDiabetes Mellitus ExperimentalInterneuronsInternal medicinemedicineAnimalsPrefrontal cortexDepressive DisorderNeuronal PlasticitybiologyGlutamate Decarboxylasemusculoskeletal neural and ocular physiologyGeneral NeuroscienceDendritesTail suspension testEndocrinologymedicine.anatomical_structurenervous systemExcitatory postsynaptic potentialSynaptophysinbiology.proteinSialic AcidsPsychologyNeuroscienceBrain research bulletin
researchProduct

Fibroblast Growth Factor Receptor 1– 5-Hydroxytryptamine 1A Heteroreceptor Complexes and Their Enhancement of Hippocampal Plasticity

2011

Background The hippocampus and its 5-hydroxytryptamine transmission plays an important role in depression related to its involvement in limbic circuit plasticity. Methods The analysis was made with bioluminescence resonance energy transfer, co-immunoprecipitation, in situ proximity ligation assay, binding assay, in cell western and the forced swim test. Results Using bioluminescence resonance energy transfer analysis, fibroblast growth factor receptor 1 (FGFR1)-5-hydroxytryptamine 1A (5-HT1A) receptor complexes have been demonstrated and their specificity and agonist modulation characterized. Their presence based on co-immunoprecipitation and proximity ligation assay has also been indicated…

Agonistmedicine.medical_specialtyReceptor complexmedicine.drug_classProximity ligation assayBiologyHippocampal formationTransfectionHeteroreceptorSettore BIO/09 - FisiologiaHippocampusRats Sprague-DawleyGrowth factor receptorInternal medicineFluorescence Resonance Energy TransfermedicineAnimalsHumansImmunoprecipitationReceptor Fibroblast Growth Factor Type 1Enzyme InhibitorsRNA Small InterferingCells CulturedBiological PsychiatryNeurons8-Hydroxy-2-(di-n-propylamino)tetralinNeuronal PlasticityDose-Response Relationship DrugFibroblast growth factor receptor 1Computational BiologyAllosteric modulation depression fibroblast growth factor receptor heteroreceptor neuronal plasticity serotonin receptorsRatsSerotonin Receptor AgonistsCell biologyEndocrinologyAnimals NewbornFibroblast growth factor receptorReceptor Serotonin 5-HT1AFibroblast Growth Factor 2PeptidesSignal TransductionBiological Psychiatry
researchProduct